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SUMMARY

We develop model-independent methods for characterizing the reliability of neural spike trains in
response to brief stimuli. Through this approach we measure the discriminability of similar stimuli based
on the real-time response of a single neuron in much the same way that modern psychophysical techniques
measure the discrimination performance of the whole animal. Extending these techniques, we quantify
discriminability as a function of time after stimulus presentation, so that it is possible to compare the
measured reliability of the neuron to its theoretical limit predicted from signal transduction and noise
levels in the sensory periphery. The methods are applied to a wide-field movement-sensitive neuron (H1)
in the visual system of the blowfly Calliphora vicina, where we also record from the photoreceptor cells that
provide the sensory input to H1. From an analysis of neural responses to wide-field stepwise movements
of various step sizes we find the following. (1) One or two spikes are sufficient to encode just noticeable
differences of approximately one-tenth the angular spacing between photoreceptors, comparable to the
hyperacuity régime observed in humans. (2) Discriminability improves upon observation of successive
spikes as if the interspike intervals carried independent information. Coding seems orderly and analogue
in the sense that we find no indication of information being transmitted in complex combinations of spike
intervals. (3) As a result of neural refractoriness the real neuron’s performance is significantly better than
that of a neuron generating spikes according to a Poisson process at the same firing rate. (4) Over
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322 R. de Ruyter van Steveninck and W. Bialek Reliability of neural movement computation

behaviourally relevant time intervals following the movement step, that is up to about 3040 ms, the
discrimination performance of the neuron is close to that of an ideal observer who extracts movement
information from all the photoreceptor cells in the field of stimulation. Beyond this time the neuron’s
performance relative to the ideal observer decreases significantly.

1. INTRODUCTION

The overall reliability of information processing in an
organism can be measured behaviourally by using the
ideas of signal detection theory and the methods of
psychophysics. This approach hasled to a considerable
catalogue of data on the performance of human
observers at various perceptual tasks. Early papers on
this subject (Hecht ¢t al. 1942; de Vries 1943; van der
Velden 1944; Rose 1948) are concerned mainly with
photon counting by the visual system. Their results
indicate that the reliability of dark-adapted vision
reaches the fundamental limits set by the physics of the
stimulus. Even in the absence of these quantitative
data, several investigators realized in the 1940s and 50s
that understanding the reliability of computation in
the nervous system posed significant theoretical
challenges. Attempts to perform reliable computations
with the available electronic computers certainly posed
serious practical problems, and the possibility that the
problems of natural and artificial computing are
related was explored. Guided by the practical problems
of electronic computing, von Neumann (1956) formu-
lated the theoretical problem of ‘reliable computation
with unreliable components’. Many authors seem to
take as self-evident the claim that this is a problem
faced by the nervous system as well. Their qualitative
picture is of the nervous system as a highly inter-
connected network of rather noisy cells, in which
meaningful signals are represented only by large
numbers of neural firing events averaged over nu-
merous redundant neurons. Neurophysiological experi-
ments lend some credence to this view: if the same
stimulus is presented repeatedly to a sensory system,
the response of an individual spiking afferent neuron is
different for each presentation. This apparently has led
to a widespread belief that neurons are inherently
noisy, and ideas of redundancy and averaging pervade
much of the literature. Significant objections to this
view have been raised, however (cf. Bullock 1970).
As emphasized by Bullock, the issue of reliability of
the nervous system is a quantitative one. Thus, the first
problem that should be overcome is to find a way for
its measurement. This paper focuses on a restricted but
basic question, the reliability of a single neuron, much
in the spirit of previous work by Barlow & Levick
(1969), Levick et al. (1983), Tolhurst ef al. (1983) and
Parker & Hawken (1985). We extend their methods of
analysis in an attempt to describe the neuron’s
reliability in a way that is as model-independent as
possible. Among the extensions is a method to study
discrimination performance in a time-dependent way.
The second — conceptually more difficult — problem
is summarized cogently in Bullock’s words ‘how
reliable is reliable?’. Just quantifying reliability is not
enough, and the qualitative question of whether
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redundancy, averaging, multiplexing, or yet more
exotic solutions to von Neumann’s problem are
relevant to the operation of the nervous system hinges
on a quantitative comparison of reliability at the level
of single cells with the reliability for the whole system.
Essentially, there are two ways to make such a
comparison: one can compare the performance of the
single cell either with the output or with the input of
the whole system. As to the first possibility, if a single
cell responds to a certain stimulus as reliably as the
animal does in a behavioural experiment, it is difficult
to imagine why multiple redundant neurons should be
used to encode the same stimulus. Alternatively, if the
reliability of a single neuron were to approach the
limits set by the sensory periphery, there would seem to
be little purpose for the nervous system to use functional
duplicates of such a cell. Experiments that address the
question from the first point of view are described by
Britten et al. (1992). These authors report that, if
movement stimuli are carefully matched to the
receptive field of a neuron recorded from area MT in
monkey, the reliability of the recorded nerve cell and of
the whole animal in discriminating direction of motion
are about equal in most cases. Also, Britten et al.
observe trial by trial correlations between the
behavioural response of the animal and the response of
the neuron, which strongly suggests that the monkey is
‘listening’ to the same cell being studied in the
experiment.

In the present paper we take the other approach,
and study the reliability of signals both in the retina
and in a wide-field movement-sensitive neuron (H1) in
the visual system of the blowfly. Signal transfer and
noise in the photoreceptor cells are measured by
intracellular recording. Based on the measured stat-
istics of photoreceptor noise we compute the limits to
the reliability of detection of movement steps for an
otherwise noiseless movement detector model. This
result is then compared with the reliability of move-
ment information encoded by the HI neuron, so that
we get a measure of the efficiency with which the
nervous system uses the total information available at
the input in computing a biologically relevant signal.
The model used here is a variant of Reichardt’s
correlator model (Reichardt 1957, 1961), in which
movement is computed as the correlation between
linearly filtered retinal signals. Under the conditions of
our experiment we know that correlation is the optimal
strategy for movement discrimination (Bialek 1992); so
we are really comparing the performance measured in
the neuron with the fundamental limits imposed by the
signal quality in the photoreceptor array.

In the H1 neuron, as in most of the neurons of the
central nervous system, information about the results of
computations is represented in sequences of action
potentials. Before we can make meaningful statements
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Reliability of neural movement computation

about the reliability of neural computation we must
understand the structure of this representation, or
‘neural code’ (Bullock 1970). Ideally we should like to
characterize reliability independent of arbitrary hy-
potheses about the code, and we approach this in a
limited experimental context. Along the way we note
several interesting features of the code in H1, but we
emphasize that our goal is the characterization of the
computation, and not the code. The experimental
approach in this paper consists in essence of a direct
application of signal detection theory to the trains of
neural impulses generated by brief stimuli. Using
methods familiar from psychophysics (Green & Swets
1966) we quantify &', the disciminability of different
stimuli, and, because neural responses are functions of
time, we can extend this to the time-dependent measure
of discriminability, d'(¢).

In line with the remarks made earlier, the emphasis
in this paper is on analysing neural and model responses
relative to the moment of stimulation. As that point in
time is determined externally and therefore unknown
to the fly, we cannot readily translate our results in
terms of how the fly itself might interpret its neural
responses. Also, in evaluating the reliability of the
response we assume that the distribution of the
magnitude of possible stimuli is known, and again
the fly has no access to that type of knowledge. Both
the question of external timing and that of stimulus
distribution are instances of a fundamental problem in
interpreting neural responses from the point of view of
the organism, or, more generally, of evaluating noisy
input data. Interpretation of signals in noise inevitably
involves finding a balance between observations and
prior expectations. In the analysis we shall first assume
exact knowledge of the moment of timing. Second, the
distribution of stimulus magnitude is kept as simple as
possible, and the statistical decision task is always
formulated as a choice between two equally probable
possibilities.

The above considerations do not invalidate our
method of measuring the reliability of the nerve cell or
the efficiency of the brain in using the movement
information implicitly present in the retina. In this
more limited interpretation the fly has the methodo-
logical status of a device of which the statistics of
input-output behaviour are characterized. Methods
for characterizing neuronal reliability under ‘real time’
conditions closer to those in natural situations are
discussed elsewhere (de Ruyter van Steveninck &
Bialek 1988; Bialek et al. 1991).

2. THEORETICAL FOUNDATIONS
(a) Representation of stimulus and response

An individual stimulus in our experiment consists of
a sudden small displacement of a wide-field pattern.
The fly watches the pattern while the response of its H1
neuron is recorded. Steps vary in size and are presented
at regular time intervals, long enough to ensure that
responses to successive stimuli are independent. In the
analysis we therefore treat the stimulus as a point event
in time characterized by one parameter, its step size.
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For ease of notation we mainly use probabilities P(.)
defined on discrete spaces of either responses, stimuli or
time. The continuous case is described by probability
densities p(.). The neuron’s signal is a stochastic
process with stimulus-dependent parameters. Its stat-
istical behaviour is described by P(r), which represents
the probability of finding a certain response r from the
set of possible responses {r}. From the neurophysio-
logical data we estimate the conditional probabilities
P(r| £), which describe the chance for a stimulus of step
size § to generate a response 7. In the experiment there
was no discernible response until a latency time
Loy = 15 ms after stimulus presentation. Spikes fired
before this time can be safely attributed to spontaneous
activity of the neuron and are excluded from analysis.

Figure 1 summarizes three different approximations
to describe the neural response: a succession of time
intervals, a time-dependent spike count and a neural
firing pattern. In the first (see figure 14a) a response 7 to
a stimulus is identified with the set of consecutive time
intervals {7,}. This form of interval distribution should
be distinguished from the conventional interspike
interval distribution, which is computed without
reference to the order of intervals with respect to an
external stimulus. We approximate the interval distri-
bution by computing the normalized histogram of con-
secutive intervals following a large number of stimulus
presentations. Most interesting for our purposes are 7,
and 7,, and the combination {7,,7,}. Here 7, is the
interval from stimulus presentation to the first spike
fired after ¢,,, and 7, is the first complete interspike
interval following ¢,.; p({7;}|§) represents the con-
ditional probability density for observing the set of
intervals {7,;}. The approximation we make here is to
consider a finite number of intervals which in this
paper will be limited to two.

The time-dependent spike count distribution is a
generalization of the method used by Barlow & Levick
(1969) to characterize the statistical reliability of a
neuron. These authors identified the response with the
number of spikes, n, fired in a fixed time window
following the stimulus. Here, essentially the same
procedure is adopted, but now for time windows of
increasing size, as illustrated in figure 1 5. We denote by
P(n|&,¢t) the probability of finding a certain value of n
conditional on §, at a certain time ¢ In contrast to the
interval description mentioned above, the number of
spikes fired can be arbitrarily large, but the method
ignores the detailed timing information that might be
present in the spike trains.

In principle the neural firing pattern representation
yields a statistical description of the response within
which every possible spike train is assigned a certain
probability. As shown in figure 1¢, a single response is
represented by a sequence [¢;, ¢y, ..., ¢;], Or in shorter
notation [¢,];, of binary digits ¢,(¢ = 1,...,%), where
¢; =1 and ¢, = 0 respectively signify the presence or
the absence of a spike in time bin ¢ (cf. Eckhorn &
Popel 1974). Experimentally, the corresponding cond-
itional probability of firing patterns P([g,],1&) 1is
determined by counting the number of occurrences of
each realization of [¢,], for a large number of
presentations of stimulus §. Time is discretized in this
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Figure 1. Three methods of describing response statistics. A
stimulus is presented at the time of the step in the topmost
trace and the neuron’s response to this single presentation is
shown directly below it. The response consists of a sequence
of spikes separated by time intervals 7,,7, etc. The neural
signal over the first ¢, = 15 ms following stimulus pres-
entation is ignored in all of the analysis. Thus the first
relevant spike is the first one fired after ¢, and the interval
between stimulus presentation and this spike is denoted by 7,.
The panels (a—¢) depict three ways of partially representing
the single-shot neural response as a function of time. By
accumulating these single-shot representations for a large
number of neural responses we obtain distributions that are
amenable to statistical analysis. (¢) Here the timing of the
first two relevant spikes is recorded by the ordered intervals
7, and 7, and subsequent intervals are ignored. Each single
response generates a {7,,7,} pair, the occurrence of which is
accumulated in a two-dimensional array. Examples of the
resulting distributions are shown in figure 5. By taking the
marginals of the two-dimensional distribution we obtain the
one-dimensional distributions for 7, and 7, separately.
Examples of these are shown in figure 4. () The solid line in
the box represents the cumulated spike count for a single
response as a function of time, starting at {,,,. This function of
time is accumulated in a series of count histograms ordered
along the time axis. In this way, all relevant spikes are taken
into account, but in the final distribution (see figure 8) the
serial dependence of spikes in single response traces is lost. (¢)
A spike firing pattern is constructed by representing a single
trace of response as a binary number. These patterns are
accumulated in a 2" dimensional array, with # the number of
bins (n = 8 in this example, n = 12 in the actual analysis). In
this way, all of the information in single responses is preserved
in principle. However, owing to the high dimensionality of
the representation we are limited to a small number of
relatively coarse bins (2 ms in the actual analysis). The
resulting distributions can be represented by binary trees, as
in figure 10.

approach and for simplicity we use equal time bins of
width A¢ Defining ¢ = kAi+1¢,, we obtain the time-
dependent distribution of firing patterns P([¢,],|£).

Phil. Trans. R. Soc. Lond. B (1995)

The resulting family of probabilities is conveniently
described by a tree as shown in figure 10 and described
in section 4(d). The time window in this analysis is
strongly limited since the number of elements in the set
of firing patterns grows as 2*. In practice we restrict the
number of time bins to 12, starting at time ¢,,. It turns
out that meaningful results are obtained with a bin
width of 2 ms (see section 2 (d)), so that we can get a
fairly complete representation of response statistics
over a 24 ms window. Apart from the approximations
mentioned, we make no assumptions about the way the
neuron encodes its signals. As all possible firing patterns
are represented by such distributions, this analysis
should be quite powerful in revealing any subtle
complex code that the neuron might use.

(b) Performance in a discrimination task

A useful measure of the performance of a neuron,
and one that corresponds to psychophysical use, is the
reliability with which on average two nearly equal
stimuli §; and £, can be discriminated on the basis of
the difference in neural responses. Such a measure can
be computed from the conditional distributions P(r| &)
and P(r|&,). If a particular response 7, is observed it
must be decided whether it was caused by stimulus &;
or by £,. The probability of correct decisions is
maximized if one uses a maximum likelihood decision
rule, so that for equal prior probabilities the outcome
is & if P(rypgl&y) > P(rasl ), and vice versa. On
average, the probability of correctly identifying step §,
is then

L (&) =EP(f|£1)H[P(f|§1)—P(7I§2)], (1)
where H[.] is the Heaviside step function and the
summation is over the set of all possible responses {r}.
An interchange of indices 1 and 2 in this expression
yields the formula for correct identification of £,. The
proportion of correct judgements in an entire ex-
periment in which &, and §, are equally probable is
then simply P, (£,, &) = [B(£,) + B (£,)]/2, which from
now on will be referred to as P, This analysis is
essentially that for a two-alternative forced-choice
psychophysical experiment. For convenience we con-
vert P, into the discriminability parameter &', familiar
from psychophysics (Green & Swets 1966), which is the
signal to noise ratio (difference in mean divided by the
standard deviation) in the equivalent equal-variance
gaussian decision problem. So, with N(x) the unit
variance cumulative normal distribution function,

N(x) = Jz exp (—2z%/2)dz/+/2m, (2)

d’ is related to P, by
d =2N7'(F). (3)

Strictly speaking, 4’ is only defined in the context of
an equal-variance decision problem, whereas the
distributions in our experiment are distinctly non-
gaussian. Nevertheless, we express our results in terms
of d" because in the model treated in section 5(¢) &
depends in first approximation linearly on step size.
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This is no serious problem because there is a one to one
relation between the derived parameter d' and the
measured quantity P,. Hence, if one wishes one can
always return to directly measured quantities.

(¢) Time-dependent discrimination

To make the comparison between measured dis-
crimination performance and its theoretical limit we
must consider the time dependence of the discrimin-
ability function. The reason is that if we allow an
arbitrarily long delay it is possible to estimate
displacement to arbitrary precision from the signals in
the photoreceptor array (see section 5 (¢)). Because it is
pointless for an animal to wait indefinitely for the
accuracy to grow, it uses a limited observation interval
to make decisions. As we have no independent estimate
of this interval, we compare the discriminability as a
function of time, d'(¢), for the H1 experiment with that
for the ideal movement sensor. In doing so, we make
the artificial assumption that the timing of the stimulus
is known to the observer, as mentioned in the
introduction. This poses no problem as long as we are
interested only in comparing observed and theoretical
performance.

To compute d'(¢) for the neuron, the response
probability distribution must be specified in a time-
dependent way. Both the spike count distribution and
the firing pattern distribution described in section (a)
fulfil this aim by construction, because a new dis-
tribution is specified at each successive time bin. Spike
interval distributions need some modification: consider
the case of single-interval distributions p(7,|§;) and
p(14]&,), defined on the interval ¢, <7, < co. The
information available on a limited observation interval
(ta1, t) during a single trial is either that the first spike
was fired at a specific time within the window, or that
no spike had yet been fired. Thus, if at a certain time
¢t we wish to assign the observed response to either &,
and &,, we can use the shape of the probability densities
p(1y] &) for 7, < t, combined with the total probability
P(1y > t|£). We define a truncated time dependent
probability distribution which is zero for 7, > ¢, and
which for 7, < ¢ has the form

(1ol & t) = p(70,61) +0(T0— 1) pr(TOa &) dr, (4)

and a similar one for §&,.

Substituting these into equation (1) we can compute
d" for each t. This procedure can be generalized
to higher-dimensional interval distributions, although
the notation becomes more complex because we have
to distinguish the different ways in which 7y+7,+...
can exceed ¢£.

(d) Error analysis and data requirements

In our analysis, in particular for the firing pattern
distribution, we make an approximation by dis-
cretizing time. The validity of this approximation can
be assessed by varying the bin width. It turns out that
the results do not change very much if the bins are
made smaller than 2 ms. Furthermore, if the analysis
is to make sense, stationarity is required, i.e. the
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probability distribution from which responses to a
certain stimulus are drawn should be invariant over
the course of the experiment. Also, the distributions,
being computed from a finite sample of responses, are
subject to statistical error. The statistical error in the
final result was estimated by partitioning the data and
working out the values of P, for these partitions
separately. The statistical variations in P, were of the
order of 0.01 in the most interesting region of values of
P, ie. from 0.6 to 0.9. This results in a typical
statistical error of 0.05 in &’. In addition, this analysis
revealed no significant trends with time; so we may
assume stationarity of the preparation.

Finally, systematic errors can be of importance.
Consider for example the comparison of two sparsely
filled histograms. In such a case, even if both
histograms represent samples from the same distri-
bution, high values of £, may be computed by the
methods described above. These systematic effects
were studied both by partitioning the raw data and by
varying the bin size of the histograms. This analysis
showed that, for the experiment presented here, the
systematic errors are of the order of the statistical
errors.

3. EXPERIMENTAL METHODS
(a) Preparation and recording

In this paper we describe one experiment on a
female blowfly (Calliphora wvicina) from which the
H1 neuron was recorded extracellularly. In addition,
data are presented from intracellular photoreceptor
recordings from another specimen of the same species.
In both types of experiment the fly was immobilized
inside a plastic cylinder and fixed with wax.

For extracellular recording, a tungsten electrode was
used, which penetrated the back of the head through a
small hole cut in the integument. Care was taken to cut
the hole small enough for the wound to seal, preventing
desiccation. At regular intervals the fly was fed sugar
water or carrot juice. With these precautions reliable
recordings could be made for several days. Action
potentials were amplified by conventional equipment
and electronically discretized. Spike interval times
were digitized in 50 ps bins and stored on disk for off-
like analysis. Further details can be found in de Ruyter
van Steveninck et al. (1986).

Intracellular photoreceptor recordings were made
with a 150 MQ glass pipette. The recorded voltage was
sampled at 1 kHz, digitized by a 12 bit A/D converter,
and stored on disk. For further details, see van Hateren
(1985).

(b) Stimulus presentation and measurement of the
interommatidial angle

In the experiments described here the stimulus was a
pattern displayed on a Hewlett-Packard 1311A crt
(phosphor P31, with decay time constant 1.2 ps and
peak spectral emission at 530 nm). For the experiments
on the H1 neuron the pattern consisted of a raster of
2048 wvertical lines (spacing 0.029°) which were
randomly set dark or bright. The raster had a refresh
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rate of 800 Hz, at a mean radiance of 32 mW/(m? sr).
The fly viewed the screen through a square (30.5°)2
diaphragm. A stationary pattern was produced by
cyclically (period 2048) reading binary intensity values
from a laboratory-built line-intensity memory in
synchrony with the 1.6 MHz vertical deflection signal.
Pattern steps were generated at 204.8 ms time intervals.
The timing of these steps was locked to the spike
interval timer clock: every 4096 periods of the clock
signal, the line memory received a pulse that suppressed
a preprogrammed (via a PRoM) number of read-out
pulses to the line-intensity memory. This resulted in a
pattern step of a well defined size on the crr. In the
experiment we used a set of 16 steps of different sizes,
presented in random order.

In the photoreceptor experiment the same CRT was
used, but with a raster of 512 lines at a repetition rate
of 3200 Hz. In this case the field was spatially
homogeneous, with field intensity set to maximum or
zero by a pseudo-random binary signal with a 1 ms
time bin. The time-averaged intensity was the same as
that in the HI recordings.

For the computation of the limit to performance in
section 5(¢) we need the value of the horizontal
interommatidial angle o, the horizontal sampling
basis of the fly visual system. This parameter was
measured by determining the Nyquist limit of the
retinal sampling raster through the reversed reaction
(Gotz 1964) in the response of Hl (Zaagman et al.
1977). The reversal point was at 2.7° for the frontal
visual field of the animal used in the experiment; hence
we take o, = 2.7°/2 = 1.35°. In the frontal visual field
the ommatidial axes form a regular array of lying
hexagons (Beersma ¢t al. 1975), from which the solid
angle for one hexagon is computed as 2/3(e,)* (°)*
Taking the ratio of the solid angle of the stimulus to
that of one hexagon, we estimate the number of
illuminated ommatidia to be 442. The movement-
sensitive system derives its input from all six members
of the R1-6 class of photoreceptors (see review by
Wehner (1981)) present in each ommatidium (we
neglect the extra sense cells in the equatorial neuro-
ommatidia; see Stavenga (1979)); so the numbers of
photoreceptor cells that contribute to the response of
the H1 neuron in the experiment is about 2652.

4. STEP SIZE DISCRIMINATION BY THE H1
NEURON
(a) Overview of the experiment

In the experiment the fly observed movement steps,
i.e. instantaneous displacements of the whole stimulus
pattern, in the preferred direction of the H1 neuron.
Steps of 16 sizes in the range 0.12° to 1.92° were
presented in random order (see figure 24) at 204.8 ms
intervals. The pattern was a random-bar grating with
a contrast standard deviation of 0.13 (see section 5 (¢)).
The total effective duration of the recording was about
11 h.

The activity of the neuron averaged over the entire
duration of the experiment is shown in the peri-
stimulus time histogram (pstH) of figure 2. The figure
shows that the amplitude of the response depends on
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Figure 2. Summary of the stimulus and the spike activity
averaged over the entire experiment. (a) Bars indicate the
occurrences and sizes of 16 successive steps presented at
204.8 ms intervals. Step sizes range from 0.12° to 1.92°. (b)
The averaged response (PsTH) obtained from 12552 presen-
tations of the complete stimulus sequence.
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Figure 3. pstHs for steps of 0.24°, 0.36° and 0.96° shown at
1 ms resolution.

the size of the step, and most strongly so in the region
of small steps. For larger steps the responses show a
pronounced peak, which reflects a time-locked firing of
the first spike.

Most of the results presented below are for 0.24° and
0.36° steps, because there we find the best discrimi-
nation performance. Figure 3 shows the psts to these
two steps at higher resolution and for comparison a
psTH for a large, 0.96°, step. After a latency of about
20 ms the averaged response rises steeply to a peak and
then decays slowly to the resting level. For large steps
the peak is very pronounced and followed by a slight
undershoot due to refractory effects.

(b) Interval statistics
(¢) Discrimination at long delays

For the moment we ignore the time dependence of ¢
and only compute its asymptotic value at long delays
for one- and two-dimensional interval histograms.
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Figure 4. Two pairs of one-dimensional interval distributions, with the corresponding cumulative probabilities on top.
Each of the histograms shows results for a step size of 0.24° and 0.36°. () Timing of the first spike that occurs at least
15 ms after stimulus presentation. () Histograms for the first interspike interval. See text for further explanation.

Figure 4 shows normalized interval histograms and
their cumulative probabilties, for steps of 0.24° and
0.36°. From these the percentage of correct discrimi-
nations can be read off graphically. As an example,
consider the case of 7,. The figure shows that for 7, less
than 32 ms the probability density for the 0.36° step is
larger than that for the 0.24° step, but that the
converse is true after 32 ms. Thus, using maximum
likelihood in a single trial one decides that the step was
0.24° (0.36°) if the observed value of 7, is longer
(shorter) than 32 ms. With this decision rule, the
proportion of correct responses can be read from the
cumulative distributions, as indicated by the arrows in
the top left panel of the figure. If a step of 0.24° is
presented, this will be identified correctly on 489, of
the occasions, which is the probability for such a step
to generate a first spike after 32 ms. For a 0.36° step,
78 %, of the first spikes occur earlier than 32 ms. In an
experiment in which both these steps occur equally
often, the probability of guessing correctly is the mean
value of these proportions; thus P, = 0.63. Substituting
this in equation (3) we find a value of 0.66 for 4’ in
discriminating a step size difference of 0.12°. So, with
the conventional criterion d’ = 1 for discriminability of
two stimuli and the approximation that &’ is linear in
step size, a difference of 0.18° can be discriminated on
the basis of the time delay between stimulus pres-
entation and the first spike fired after z,.

The two-dimensional interval histograms for {7y, 7,}
conditional on the same pair of steps are shown in
figure 5. Figure 5¢ illustrates the maximum likelihood
decision map for choosing stimulus step size. The
integral of P(7,,7,|& = 0.24°) over the black area is

Phil. Trans. R. Soc. Lond. B (1995)

0.71, while the total probability for a 0.36° step to
generate {7,,7,} in the grey area is 0.77. The resulting
value of P, is again the average of these two, 0.74,
which gives a value of 4 close to 1.

Figure 6 presents values of 4" for discrimination
between step pairs that differ by 0.12°; as a function of
the size of the smaller step. The results for dis-
crimination based on the single intervals 7, and 7, are
shown in (a). For small steps discrimination based on
the interspike intervals 7, is better than that for 7,. For

tep sizes larger than about 0.8°, discrimination
deteriorates for both 7, and 7,. This can be attributed
to saturation of the neuron’s response: for steps of these
sizes it becomes increasingly difficult to generate
smaller intervals. For the two-dimensional case shown
in (b) the best performance is again found for small step
sizes, with a just discriminable difference of about 0.1°.

The figure also compares the 4’ values obtained from
the two-dimensional distributions with the pytha-
gorean sum +/[d'(7,)%+d'(7,)?], computed from the
values of ¢’ for the intervals separately. If for each step
size the value of 7, is statistically independent of the
value of the preceding 7,, then at least in the gaussian
approximation the measured and computed values of
d’ should agree. The figure shows that the computed
data lie somewhat below the measured ones, but on the
whole the agreement is quite good. As a check for
statistical independence, the correlation coefficients
between 7, and 7, were computed. For all step sizes
these coefficients are low, about 0.3 or less, as expected.
Thus, apparently the two consecutive intervals can be
regarded as statistically independent, and so contribute
the information almost independently.
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Figure 5. Two-dimensional interval histograms for intervals
{74, 7,} and step sizes of 0.36° (a) and 0.24° () respectively.
(¢) Decision map for the (0.24°/0.36°) combination, based on
histograms (a) and (4). Interval pairs are assigned to the
0.36° or the 0.24° step on the basis of maximum likelihood.
The grey and the black areas correspond to regions with a
higher likelihood for the 0.36° and the 0.24° step respectively.
For clarity, those bins for which both interval distributions
contain five counts or fewer are assigned to neither of the
steps.

(@) Time-dependent discrimination

By constructing truncated interval distributions (see
section 2 (¢)), d’ can be computed as a function of time.
Figure 7 shows results for three step size pairs. These
are selected to represent the comparisons of two small
steps, of a small with a large step and of two large steps
respectively. In all figures '(¢) reaches a plateau at a
certain time. For the 0.24°/0.36° pair this plateau sets
in at ¢ = 32 ms for discrimination based on 7,. This is
due to the crossover in the interval distributions for the
two step sizes, as can be seen from figure 4. Dis-
crimination performance among the two large steps is
relatively bad, while it is best for the 0.12°/0.96° pair.
However, if we scale the values of &’ for the step size
difference, it turns out that the performance is best for
the two small steps, as can be seen from figure 12. For
the 0.24°/0.36° and 0.12°/0.96° pairs, the performance
for the double interval distribution is about twice as
good as for the single. In contrast, for the 0.96°/1.44°
case, the 4’ for the first interval alone is about one-third
of that for the interval combination, most likely as a
result of locking of the first spike.
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Figure 6. (a) Discriminability ¢’ as a function of the size of the
smaller step in a discrimination task between pairs of steps
that differ by 0.12°. (4) As above, but now for the double
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Figure 7. Time-dependent ' for pairwise discrimination of
steps with the sizes indicated in the figure.
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(¢) Spike count statistics

Time-dependent spike count distributions for steps
of 0.24° and 0.36° are shown in figure 8, together with
the corresponding maximum likelihood decision map.
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Figure 8. (a, b) Distributions of the spike count, z, conditional
on time after stimulus presentation, ¢, for a 0.36° () and a
0.24° (b) step. (¢) Decision map for the (0.24°,0.36°)
combination. Spike counts are assigned to the 0.36° (grey) or
the 0.24° (black) step on the basis of maximum likelihood.
The figure might give the false impression that there are dips
in the distribution. The impression arises because in the
projection shown one looks obliquely at the ridges corre-
sponding to the discrete values taken by 2.
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Figure 9. Time-dependent discrimination computed from
spike count distributions. Data are shown for the three step
size pairs indicated in the figure.
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Figure 8a,b must be interpreted as conditional
distributions: for each moment in time, they represent
a distribution of spike count up to that time. So, for
t = 15 ms, the moment at which counting starts, the
probability for n = 0 equals 1. As time progresses, the
probability for n = 0 decreases, and flows over to the
probability for n to become 1, and so on. The count
distributions for the two stimulus conditions are
compared for each time bin, and by maximum
likelihood a given count at a certain time is assigned to
each of the two stimuli. The result of this procedure is
depicted in (¢), which shows that the lower values of n
are assigned to the smaller step and the higher values
to the larger step, as expected. By computing the
associated values of P,(¢) we compute 4'(¢), shown in
figure 9 for three pairs of steps. There are two
noteworthy aspects to this result. The first is the
fluctuation of d’(¢), which is related to the discreteness
of the count distributions: from one time bin to the
next, the stimulus to which a particular value of n is
assigned by maximum likelihood may change from one
to the other, as is illustrated by the stepwise changes in
the decision map of figure 8. The second is that on a
longer time scale the value of d decreases slowly. This
effect is inherent to the analysis of transient responses
in terms of spike count: at longer times, the con-
tribution of the neuron’s spontaneous activity to the
spike count washes out the extra counts in the transient
response to the stimulus. The beginning of this effect
can be seen from figure 9, but it should be more
apparent at longer time scales. This cannot be shown
from these data, because the steps in the experiment
were presented at 204.8 ms intervals.

The maximum value for ¢ in figure 9 is about 2.6.
If we compare this with the maximum value of nearly
4 found for the interval distributions (see figure 7), it
appears that a significant amount of information is lost
when only the spike count is taken into consideration.

(d) Firing pattern distributions

Neural firing pattern distributions for three step sizes
are represented by the trees shown in figure 10. These
distributions are constructed as follows: starting at the
first time bin (15 ms after the stimulus was presented)
there are two possibilities: either a spike is fired within
the bin or not. These two events are represented by the
black bar and the white bar on top of it in bin 1. The
length of each of the bars represents the probability of
each event, hence the lengths add up to unity. Now the
two possibilities in the first time bin create different
firing patterns, and for each of the two outcomes in the
first bin there are two possibilities in the second bin. In
the second bin we then find four areas: the offspring of
the black bar in the first bin consists of a (negligibly
short) black bar, with a white bar on top. The total
length of these two is equal to the length of the black
bar in the first bin. The silent events in bin 1 give rise
to the other combination of a black and a white bar in
the second bin. Thus the lengths of the four bars in bin
two represent the probabilities of double firing, of
firing followed by silence, of silence followed by firing
and of two consecutive silent periods, respectively. This
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Figure 11. Discrimination performance computed from
measured firing pattern distributions such as those in figure
10. The data are presented as a function of time for the three
step size pairs indicated.

process of bipartitioning takes place in each subsequent
time bin; hence the total number of response categories
grows exponentially with time. Here the analysis is
limited to 12 bins, or 4096 response categories. Note
that the number of presentations, 12552, is of the same
order as the number of response categories. We can still
do meaningful statistics, however, because a large
proportion of response categories hardly ever occurs,
for example those containing spikes in adjacent time
bins.

As depicted in figure 1, all firing patterns are
represented by a binary number. We use this rep-
resentation in figure 10, ordering the binary numbers
from the highest at the bottom to the lowest value at
the top, with the more significant digits earlier in time.
The effect of the neuron’s refractoriness is clearly
visible; hence the choice of the time bin seems
reasonable. As a check, the performance was computed
for 0.5 ms and 1 ms bins as well, and the results for the
first 6 and 12 ms respectively were essentially the same
as with 2 ms time bins. As outlined above, a set of

Phil. Trans. R. Soc. Lond. B (1995)

in figure 11, where the value of 4 is given as a
function of time, as it is computed from a number of
pairs of firing pattern distributions. After 40 ms the
discriminability for the best case is near 1, which
agrees with what was found for discrimination based
on interval distributions.

At first sight it may seem contradictory to construct
a continuous measure from a signal in which in-
formation is encoded in the form of discrete points in
time. Note, however, that the neuron’s response can in
effect be considered continuous because not only the
occurrence but also the non-occurrence of a spike in a
certain time window carries information. This sym-
metry is expressed in a natural way by representing the
firing pattern density in the form of a tree. Fur-
thermore, the analysis does not suffer from the
shortcomings of the spike count distributions
mentioned in section 4 (¢): d’(f) is a monotone non-
decreasing function, because each time bin of the firing
pattern distribution takes into account the complete
evolution of firing statistics in time.

(e) Comparing coding schemes and stimulus pairs

Here we treat two separate issues. The first is the
comparison of the different assumed coding principles.
To this end we plot the d'(¢) curves for these cases in the
same graphs in figure 12. The second issue is the
comparison of discrimination performance for various
step size pairs. To make this comparison meaningful,
the values of ¢ for each of these pairs must be
normalized. Therefore, in figure 12 the values of ¢" are
scaled to unit (i.e. 1°) step size difference. The scaling
factors were computed from equation 9.

It is clear from the figures that at short times the
discriminability curves are similar for all coding
schemes. This makes sense, because at short times the
only information present is based on the timing of the
first spike, and for observation windows containing at
most one spike there is obviously no real difference
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Figure 12. Compilation of d'(f) curves presented above, but all scaled to a 1° step size difference to facilitate
comparison among stimulus pairs. () 0.24°/0.36°; () 0.12°/0.96°; (¢) 0.96°/1.44°. Dashed lines, 7,; dotted lines,
{74, 7,}; dot-dashed lines, spike count; solid lines, firing pattern.

between rate and timing codes. Discrimination based
on spike count is less efficient than the other methods
when information from the second interval starts to
come in, and it loses out considerably at longer times.
Over the time window shown, d’'(t) based on path
distributions is close to, but somewhat less than, that
based on the {r,,7,}. This discrepancy is due to the
larger bin size of the path distribution.

At 40 ms after the step, the number of spikes fired on
average is 3.2 for the 0.96° step and 2.0 and 1.3 for
0.36° and 0.24°, respectively. Thus it is not surprising
that & for trees is not better than for interval
distributions. If we use 4 ms bins we can compute trees
over a longer time interval, resulting in 5.2, 3.4 and 2.3
spikes on average for the same cases at 60 ms after the
step. For 4 ms bins the dependence of ¢’ on time shows
a positive slope at large times, especially for the
0.96°/1.44° pair, but the price paid is a lower
performance at small times because there the spike rate
is too high for the bin size. The slope at long delays is
far less than the slope at around 30 ms, so that even if
we combine the data for the 2 ms and 4 ms case in the
most optimistic way, the value of ¢ at 60 ms may only
be 10 or 209, higher than that based on two-
dimensional interval histograms. In principle there is
enough information in the stimulus to encode step sizes
with a high precision after a long waiting time, as can
be seen from figure 19a. The neuron does not seem to
encode the stimulus with this precision, however, as the
values of &’ from the firing pattern distributions are off
by roughly an order of magnitude from the theoretical
precision. In this sense, and with the caveats mentioned
earlier, the analysis of firing pattern distributions seems
to exclude the use of a complex coding strategy.

If we compare across step size pairs, and consider the
double interval case, it is clear that scaled performance
is best for the 0.24°/0.36° pair at long delays. The
asymptotic performance is roughly one half and one
third of this for the other step pairs. In contrast, the
steepness of the d’(¢) curves for the different combina-
tions is of equal order of magnitude for the three cases.
This is important, because theory predicts an upper
bound to the slope of this curve, as will be shown in
section 5.

Phil. Trans. R. Soc. Lond. B (1995)

(f) Effects of relative refractoriness

For a Poisson process, the simplest mathematical
model of stochastic point processes, the probability of
generating an event is just proportional to the
instantaneous rate, and does not depend on the
occurrence of previous events. The instantaneous rate
of the Poisson process may change over time, in which
case it is called inhomogeneous. By contrast, neural
action potentials are subject to serial correlation,
because it is impossible for a neuron to generate a spike
very closely following a previous one (absolute re-
fractoriness) while the threshold for spike generation
remains elevated for some time longer (relative
refractoriness). In attempts to model neural data these
effects are often neglected, and mainly because of its
mathematical convenience the Poisson process is used
as an approximation.

A priori it is not clear to what extent and under what
conditions such approximations are valid or useful.
One way to approach this question is to analyse how
the serial correlation in the neuron’s firing affects
discrimination performance. This can be done simply
by comparing the performance based on measured
distributions to the performance computed for distri-
butions derived for inhomogeneous Poisson processes.
Using the rate functions given by the pstHs of figure 3
we compute the distributions of 7, and 7, for 0.24° and
0.36° steps shown in figure 13. These should be
compared to those at the bottom of figure 4. For 7, the
distributions for the actual neuron and for the Poisson
process do not differ markedly, because their shape is
mainly determined by the steep increase in rate at
about 20 ms. The distributions for 7,, however, are
dramatically different. For the Poisson process, the
maximum of these histograms lies at 7, = 0, while
figure 4 shows that the generation of the second spike
by the neuron is suppressed for over 5 ms, shifting the
peak to the right. The important point here is that the
refractoriness is relative, which means that the peak for
the larger stimulus step is shifted less than the peak for
the smaller one. The effect of this is that the two
interval distributions are pulled apart further, and as a
consequence are more discriminable than they would
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Figure 13. One-dimensional interval distributions for steps of 0.24° and 0.36°, computed for inhomogeneous Poisson
processes with rates given by the pstHs of figure 3. (a) Timing of the first spike that occurs at least 15 ms after stimulus
presentation. (b) Histograms for the first interspike interval. These data should be compared with the measured
interval distributions shown in figure 4.
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Figure 14. Three examples of computed firing pattern trees for an inhomogeneous Poisson process with a rate given
by the measured firing rates of figure 3: ((a) 0.24° step; (5) 0.36° step; (c) 0.96° step). These model results should be
compared to those in figure 10.
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Figure 15. Comparison of discriminability based on one- and two-dimensional interval distributions and firing
patterns for the Poisson firing model (dashed lines, 7,; dot-dashed lines, {7,,7,}; solid lines, firing pattern). Data are
expressed as d'(t) for the same three step size pairs as used in figure 12: (a) 0.24°/0.36°; (b) 0.12°/0.96°; ()
0.96°/1.44°. To facilitate comparison among stimulus pairs the data are scaled to a step size of 1°. To facilitate
comparison with discriminability as measured for the neuron, the dotted line represents the data for the measured
performance based on {r,,7,}.
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have been in the absence of refractoriness. Computed
firing pattern distributions are shown in figure 14,
which should be compared with figure 10. The trees in
figure 10 look less dense than those in figure 14, owing
to the neuron’s suppression of short intervals.

Figure 15 shows scaled discrimination as a function
of time for the Poisson one- and two-dimensional

Phil. Trans. R. Soc. Lond. B (1995)

histograms and firing pattern distributions, with the
same step combinations as in figure 12. As a reference,
the figure also shows &'(¢) for the measured {7,, 7,} case.
Comparison of figures 12 and 15 shows clearly that
discrimination performance based on the first spike is
somewhat reduced for the Poisson process. There is a
drastic reduction, however, in the contribution of 7, to
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d as expected from figure 13. A similar effect is seen for
the firing patterns. From the point of view of the fly
itself this must be quite important because, as pointed
out earlier, internally it has access only to the
information in interspike intervals like 7, and sub-
sequent intervals, and not to the time lapse 7, between
an external stimulus event and the first spike.

One way to interpret these results is that the real
neuron is more efficient than the Poisson process in
using a fixed number of spikes to encode information.
This is in line with the observation that the information
content of shorter interspike intervals rises rapidly
when the interval gets shorter (de Ruyter van
Steveninck & Bialek 1988). It is perhaps important to
stress that the comparison we make is based on use of
a fixed net spike rate that was measured from a real
neuron subject to refractoriness. In the Poisson model
we use this rate function but we switch off the serial
correlation. Something different would happen if we
could so to speak switch off refractory effects in the
nerve cell while keeping the generator potentials
unchanged. In that case the model’s spike rate would
increase compared with the neuron’s, and, at the
expense of a greater number of spikes, the model’s
discrimination performance would improve.

5. RETINAL LIMITS TO RELIABILITY OF
MOVEMENT DETECTION

Any inference made by the visual system is limited in
its accuracy by the information available at the level of
the retina. This in turn is determined by signal
transduction and noise in the individual photo-
receptors, by the photoreceptor point spread function
and array spacing, and by various physical properties
of the stimulus.

For the simple stimuli used here it is relatively easy
to determine the theoretical bound on step size
discrimination based on the photoreceptor signal
quality. We compute this limit for Reichardt’s (1957,
1961) correlation model of movement detection. This
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describes the measured movement response for a small
step very well (cf. figure 18), and has been very
successful in describing a wide variety of phenomena in
biological movement detection, both in fly (Reichardt
& Poggio 1976; Buchner 1984) and in humans (van
Santen & Sperling 1984). Also, it can be shown that
correlation is the optimal computational strategy for
movement detection under the conditions of our
experiment (Bialek 1992; Potters & Bialek 1994). The
measured signal transfer of the photoreceptors, com-
bined with the known geometry of the stimulus and the
optics of the visual system, determine the signal input
to the model. The noise input is taken directly from the
measured photoreceptor noise power spectrum.

(a) Spatial properties of the photoreceptor array

For the spatial sampling basis we take the horizontal
projection of the interommatidial angle, o, = 1.35°
(see section 3 (b)). The horizontal is the only coordinate
of importance in the computation, because the stimulus
consists of vertical bars. The point spread function of
the photoreceptor is approximated by a gaussian (G6tz
1965) with a full width at half maximum of 1.2°
(Smakman et al. 1984). The corresponding standard
width, £, of the gaussian is then 1.2°/4/(81n2) = 0.51°.
For the computations presented here we work with the
one-dimensional point spread function

M(¢) = exp (—4*/26%)/f~/2m, (5)

which has unit gain for spatially homogeneous
patterns.

(b) Photoreceptor signal transfer and noise

Figure 16 shows the impulse response g(f) and the
noise power density spectrum W of a blowfly photo-
receptor. These results were obtained by measuring the
response of an impaled photoreceptor cell while it was
stimulated by a series of 100 identical pseudo-random
sequences of light intensity values as described in

10—2 —
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10—4 -

-5
10 [—

106 ! ! L ]
0.1 1 10 100 1000

f/Hz

Figure 16. (a) Photoreceptor impulse response scaled as the average voltage trace in response to a doubling of the light
intensity during 1 ms. (4) Photoreceptor noise power density spectrum.
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Figure 17. Two neighbouring Reichardt correlators. The
gaussian functions on top represent the spatial point spread
functions of the photoreceptors characterized by the width £
of the point spread function, with an angular separation a,
between neighbourhing photoreceptors. The light flux into
each photoreceptor is converted to a voltage by the filters g
representing the cell’s transduction dynamics. Gaussian noise
is added to the signal of each receptor by the independent
noise sources w. In the computations the filters h have a
negative-exponential impulse response with a time constant
of 20 ms.

section 3. At the contrast values used the photoreceptor
is linear to a good approximation (Leutscher-Hazelhoff
1975), which means that the averaged response
waveform can be described as the convolution of the
stimulus contrast with the photoreceptor’s impulse
response. As convolution in the time domain corre-
sponds to multiplication in the frequency domain, the
impulse response is found by taking the ratio of the
Fourier transforms of the average response trace and
the stimulus sequence and inverse-transforming the
result. The noise power density was obtained by
averaging the noise power density spectra of all
recorded voltage traces after subtraction of the average.
Using shot noise analysis, one can show that, for an
ideal photon counter and Poisson photon statistics, the
contrast power transfer function divided by the noise
power density should be equal to the photon arrival
rate. Analysis of the photoreceptor data shows that, up
to about 20 Hz, this ratio is close to the 9.8 x 10®s7!
photon conversion rate estimated from the stimulus
luminance, the optics and the quantum efficiency of
phototransduction (de Ruyter van Steveninck 1986).
This means that in this frequency range the photo-
receptor acts as a nearly ideal photon counter.

(¢) The response to a small movement step

For simplicity we assume that the stimulus pattern
makes only one step at ¢t = 0. The task of estimating a
movement step involves the comparison of the signals
present in the photoreceptor array after ¢ =0 with

Phil. Trans. R. Soc. Lond. B (1995)

those before ¢ = 0. This implies that a replica of the
photoreceptor signals must be stored in retinotopic
memory elements. It is also intuitively clear that it
takes time to make accurate judgements: photons
arrive stochastically, and so the change in light flux at
t=0 in each individual photoreceptor can be esti-
mated reliably only after a sufficient number of photons
has been accumulated. For the simple task we analyse
here, namely estimation of the size of one step given its
occurrence time and given that this is the only stimulus
that occurs on {= (—o00,00), the accuracy can be
made arbitrarily high if we are willing to wait long
enough to accumulate photons. Clearly this makes no
sense for a biological sensor that has to operate in real
time. However, in the experiment as it is set up, the
time derivative of d'(f) is ultimately bounded by the
number of photons that are collected per unit time by
the photoreceptors. So we should look at the measured
and the predicted slope of d'(¢) to make a physically
meaningful comparison.

The movement response is computed by an ensemble
of elementary movement detectors (Buchner 1976),
two of which are shown in figure 17. This configuration
is a modification of Reichardt’s correlation model for
movement detection (Reichardt 1957, 1961). The most
salient difference is that the temporal averaging at the
output is replaced by summation over an ensemble
of spatially distinct units. For this configuration we
compute both the ensemble response to a movement
step and the output noise power spectrum.

The conditions of the experiment allow an important
simplification: the spatial correlation length of the
stimulus pattern is much smaller than the angular
sampling basis a,. This means that, for small step sizes,
correlations among signals from next-nearest neigh-
bour photoreceptors are negligibly small compared
with those among nearest neighbours, so that correlator
outputs in different areas of the visual field are
statistically independent. Because the pattern moves as
a whole, the outputs of different correlators have equal
expectation values. The total movement signal can
thus be obtained simply by adding the signals of all
nearest-neighbour correlators, and the output noise
power spectrum of the correlator array is found as the
sum of the power spectra of different elementary
correlators. In this section and the following we
compute the expectation values of the response, and
the noise power spectrum, of one elementary correlator.
There are two inputs to each correlator, corresponding
to different directions of view. In the eye of the fly, six
photoreceptors share the same direction of view, and
their signals are combined by neural superposition
(Kirschfeld 1967). In computing signal and noise for a
single correlator we therefore simply use inputs that
can be thought of as the sum of six photoreceptor
signals, each with an independent noise source. This
effectively increases the signal to noise amplitude ratio
at the correlator inputs by a factor /6.

The elements h in the model of figure 17 represent
the retinotopic memory referred to earlier. They are
modelled as first-order low pass filters, i.e.
h(t) = (1/7) exp (—t/7), with 7 = 20 ms. This value of
7 is chosen to fit the model’s response to that of the H1
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Figure 18. (a) Response of a single model correlator to a 0.12° movement step. Inset: the computed response (smooth
line), shifted 10 ms to the right and scaled to fit the PsTH (ragged line) in response to a 0.12° movement step. (b)) Noise
power density spectrum at the output of a single model correlator. The results are computed for the conditions
pertinent to the experiment. Each of the two correlator inputs receives the summed signals of six photoreceptors, in
accord with neural superposition in the fly’s eye (see text). The units along the vertical axes are somewhat unusual
because the output signal of the model correlator is the product of two signals each with the dimension of voltage.

neuron for a small step (see inset, figure 18a). If 7 is
allowed to become very large, the step response reaches
a constant level different from zero at large times. As
the noise level stays finite, single-step displacement can
be estimated with arbitrarily high precision if one waits
long enough. This problem is avoided by giving 7 a
realistic value. However, the exact value of 7 is not very
relevant for our purposes, because we shall compare
the measured and computed values of 4" only for the
initial rising slope of the response, and the steepness of
this is determined by the steepness of the photoreceptor
response.

As illustrated in the figure, the input light intensities
are denoted by u;, the photoreceptor signals by »; and
the output of the filter £ by x,. These signals all depend
linearly on the stimulus intensity. After the multipliers
we have the signals y0, and y1, and the output z; of an
elementary correlator, which is equal to y1,—y0,,;.
The photoreceptor impulse response is denoted by g(¢)
and its step response by G(¢), and it is convenient to
define the convolution of g(¢) and A(t) separately as
Y (t), with the corresponding step response ¥(¢). Note
that G(¢) and ¥(¢) represent responses to a unit step in
light intensity; they should not be confused with the
model’s response to a movement step. The direct
current (pc) gains of g(¢), A(t) and ¥ (¢) are represented
by g, iy and ¥, respectively; thus i, = g, 4. Finally,
ensemble-averaging is denoted by {...), and signals
just before and after ¢ = 0 carry the superscripts ~ and
* respectively. For the signals » and ¥ we now find:

vH(t) = wgo+ (=) G(1),
() =u o+ (" —u) P(). (6)

For an elementary correlator i, we have yl, = v, ; x;,
and y0,,, = v;x,,.;, and the difference z; is found by
substituting (6):

z(t) = (u ufyy — g u)) [Yo G() —go P (1)1, (7)

Phil. Trans. R. Soc. Lond. B (1995)

in which the first factor on the right side depends on the
spatial geometry and on the stimulus, and the second
on the dynamics of the filters. To find the output of an
ensemble of correlators, the first factor, 4, is ensemble-
averaged: <4) = {(uj uf,; —uj.,u]))>. The two terms in
this equation are two values of the spatial autocorre-
lation function of the stimulus pattern as seen through
the photoreceptor point spread function, at different
distances. If we neglect the pa level in the stimulus
pattern, which carries no movement information

anyhow, this autocorrelation, @, is found as

O.($) ~ Pyexp (—$°/48%) 2B/ T, (8)

where @, = 0.029° is the bar width of the stimulus
binary random bar pattern, and the approximation is
good because @, € f. The variance of the stimulus
contrast after spatial filtering by the photoreceptor is
found directly as the value of (8) for ¢ = 0. Substituting
@, and [ we find O,(0) =0.016; so the standard
deviation of contrast values is about 0.13.
For a movement step of size § the value of (4) is

<A(g)> =@ss(ah_g)_@ss(ah+g), (9)

which is proportional to & if § is small. This result was
used to scale the values of d’ for each step size pair in
figures 12 and 15. The output of an ensemble consisting
of N elementary correlators is then

R(t,§) = N[Yry G(t) —g ¥(1)]
X [@ss(ah_g)_@ss(ah-l_g)]:

and all quantities appearing in the expression are
known by direct measurement, except for A(¢). The
resulting form of the response is shown in figure 18 4, for
a step size § = 0.12°. The inset in this figure shows the
measured psTH for a 0.12° movement step, and for
comparison the computed response, scaled to fit the
psTH. Also the computed response is shown shifted

(10)
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10 ms to the right to account for latency times in
computation and signal transport within the nervous
system. This total delay time is also used in comparing
measured and computed responses, as in figure 19.

With the 20 ms time constant for 4(f) and the
measured integration time of the photoreceptor (about
13 ms), the rising flank of the model response is
determined primarily by the photoreceptor’s dynamics,
while its decay is mostly governed by the shape of &(¢).
The inset shows that the model’s output corresponds
quite well to the measured H1 response.

(d) Correlator output noise power

The inputs to correlator ¢ consist of two independent
fluctuating signals w; and w,,; due to photoreceptor
noise, each superimposed on temporal pc terms
v, = u, g, and v, ; = u,,, g, which represent the average
photoreceptor depolarization levels. For the com-
putation of the correlator output noise we consider the
stimulus-induced signals # and with it the photo-
receptor depolarizations v to be constant in time. This
means that we neglect the changes in v induced by the
movement step. As the pattern contrast is small and we
are interested in small step sizes here, such an
approximation is reasonable. Because the stimulus
pattern has spatial structure, the signals v are in
general different for different photoreceptors. For the
computation of the total output noise, the variance in
the ensemble {v;} of time-averaged photoreceptor
voltages can be considered a component in the
photoreceptor noise spectrum at zero frequency.
Therefore the ensemble-averaged noise power density
spectrum for each input to the correlator is

Nyp(w) = W(w) +210(0) g 6(w), (11)

pr
with W(w) the measured photoreceptor noise power
density and @(0) g; the variance of the time-averaged
depolarizations over the ensemble of photoreceptors.
For uncorrelated input signals, the output power
density spectrum of a multiplier is the convolution of
the power density spectra of its input signals (Mircea &
Sinnreich 1969),

Vo) =5 | Nofon) o) o 12
The dynamics and the structure of an elementary
correlator are represented by the transfer kernel
(Wiener 1958; Poggio & Reichardt 1973),

B(wy, 0—w,) = h(w;) —h(w—w,), (13)
where £(w) is the transfer function of the filter’s impulse
response 4(t). The two terms on the right are from the
two branches of the correlator. Each of these terms
depends on only one frequency, because one of the
components in each branch is all-pass. By combining
(12) and (13), the ensemble-averaged correlator output
noise power spectrum is found as

N (w) = QLTC Jw Ny(wy) Ny (0 —w,) |B(w;, 0 —0,)]* do,,
(14)

where Ny and N, are uncorrelated noise power spectra
given by equation 11. The result of (14) is shown in

Phil. Trans. R. Soc. Lond. B (1995)

figure 184. Each of the interacting input noise terms in
equation (14) is the sum of a noise term and a stimulus-
induced variance, as given by equation (11).

(e) Detection and discrimination

Because the final result will be derived for the sum of
a large number of correlator outputs, we can apply the
central limit theorem and approximate the correlator
output noise as gaussian. Then, from the shape of the
response and the autocorrelation of the correlator
output noise, the detection performance can be
obtained in a standard way. Here we follow Van Trees
(1967) and compute 4’ as
4 =/ [R{() O (4 1) R ()], (15)
in which R,(¢) is a vector describing the computed
response, given by (10); @, (¢,¢) is the operator inverse
of the movement detector’s output noise autocorre-
lation @, (¢), which itself is obtained as the inverse
Fourier transform of N,(w) in equation (14). Note that
both the response and the covariance are measured in
discrete bins, and can therefore be treated as a vector
and a matrix respectively. The value of &’ can now be
found by computing @.}(¢,¢') for increasing time
windows to obtain d’ as a function of time. The total
response is found by multiplying the ensemble-
averaged response by the number, N, of correlators.
The noise output signals of the different correlators are
independent, because, as can be seen from figure 17,
one can add the correlator outputs going from left to
right in the figure, and each new output contains one
new independent noise source from the input on the
right. Therefore the ensemble noise power is found by
multiplying the result for one correlator by N, and so
d’ follows the square-root law. In figure 194 4'(¢) is
shown as a function of time for an ensemble of 442
correlators, in agreement with the conditions of the
experiment.

It is perhaps helpful to consider how the correlator’s
output signal to noise ratio scales with input contrast
and with the incoming photon flux. If the photon flux
absorbed by each photoreceptor has a mean rate A,
then the average signal power in the photoreceptor is
proportional to @ (0) A*, where O, (0) is the stimulus
contrast variance as in equation (8). The output signal
power of the correlator should scale simply as the
square of the photoreceptor power. The photon shot
noise power is proportional to A. In the conditions of
our experiment the output noise level is dominated by
cross-interactions between stimulus-induced signals
and noise, rather than by noise—noise interactions. This
means that the correlator output noise power scales
approximately as the product of input signal power
and input noise power, thus as @ (0) A%. Consequently,
the output signal to noise power ratio is proportional to
[0,(0) A*]2/[O(0) A%], or [O(0) A]. This represents
a signal to noise power ratio; hence 4’ should be
proportional to the square root of this quantity. In
particular this means that 4’ is proportional to contrast
and has a square-root dependence on the photon
capture rate. For very low contrasts or photon capture
rates the output noise power is dominated by noise—
noise interactions. Then the correlator output noise
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Figure 19. (a) Comparison of the discrimination performances of the neuron and the model movement detector. Solid
line : 4’(¢) for the step pair 0.24°/0.36°, based on {7, 7,}. Left dashed line: d'(¢), computed from the noise spectrum
together with the spatial and temporal transfer functions of fly photoreceptors, and the number of photoreceptors
involved in the response. As shown in figure 18 the neuron’s response is delayed with respect to the model by 10 ms.
The same delay was applied to the model, and the result shown as the second dashed line. () The measurements and
the shifted computation shown at higher resolution. Solid curve: d'(¢) for 7, only. Dotted curve: d’(¢) for the double
interval {r,,7,}. Dashed curve: 4'(t) for the model, shifted over 10 ms. The maximum slope of the neuron’s
discriminability curve is about half that of the computed curve. The region over which the information is carried

primarily by the first spike is from about 20 to 28 ms.

power is proportional to A% so that 4’ scales as 6 (0) A.
In other words, in this régime &’ is proportional to the
square of the contrast and is linear in the photon flux.

(f) Comparison of measured and theoretical
performance

In figure 19 the computed limit to step discrimi-
nation is compared with the performance of H1 in the
same task. To judge neural performance against the
theoretical limit we shift the computed result by a
10 ms delay as derived from the fit of the model to the
neuron’s response (see inset, figure 18). Figure 194
shows first of all that at long times the neuron performs
much worse than the model. This is not too surprising
since the model’s asymptotic discrimination perform-
ance is determined by our choice of model filter time
constants. The asymptotic performance can be made
arbitrarily high by choosing long enough time
constants, as pointed out in section 5(¢). As also
pointed out there, the more meaningful thing to do is
to compare the slopes of the d'(¢) curves. To see this in
more detail the data are shown magnified in figure
1956. In particular, in the region where the information
of the first spike comes in, the maximal slope of the H1
curve is about half that of the theoretical curve. After
that the curve levels off somewhat and rises again when
the information from the second spike is used. At
45 ms, when most of the information of the second
spike is used, the neuron’s 4’ is about one-third of the
model’s.

As reasoned above, 4" should scale as the square root
of the photon flux. During the fast rise in ¢ the neuron
is off by about a factor of two in the computation of the
movement signal; so there the brain uses 25 %, of the
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effective number of photons absorbed in the visual
field. So, for this time window the randomness of H1’s
response is determined to an appreciable extent by
photoreceptor noise. As a rough estimate, when the
photoreceptor signal is integrated over an 8 ms time
window most of the resulting photoreceptor noise is
due to the random arrival of photons (see section 5 ()).
Therefore, in the statistical decision task formulated
here, the performance of H1 is well within an order of
magnitude from that of an ideal wide-field movement
sensor limited by photon shot noise in the 2652
photoreceptor cells, or 442 elementary correlators,
stimulated in the experiment. Of course this is only true
over a short time window and, as the figure shows, the
neuron’s asymptotic performance is far below the
theoretical limit. We shall go into this in the next
section.

6. DISCUSSION

We wish to remind the reader once more that from
the point of view of the animal our analysis of reliability
of Hl may be rather artificial, because most of the
computations are done on response distributions
specified relative to the timing of an external stimulus.
In real life the fly does not know the timing of stimuli
generated independently of the animal, and therefore
cannot use the information carried by the timing of the
first spike on this one neuron by itself. Of course the fly
does have access to the information stored in spike
intervals, either on the single neuron, or among
different cells. If we just consider the single cell we see
that the spike interval 7; generally gives somewhat
better discrimination than 7, of course at the expense
of a longer waiting time. Interestingly, the encoding of
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step size in interspike intervals seems much more
efficient for the real neuron than for a Poisson model,
given equal firing rates.

Independent of these considerations, the question of
performance of the fly’s nervous system in computing
movement step sizes is an interesting one, even if we do
not know how the fly uses the information in H1. The
analysis given here yields a valid description of this
performance in a well defined, but restricted ex-
perimental context. Within this framework the results
can be compared quantitatively to the theoretical
limits computed on the basis of the information
available in the retina. The quantity of fundamental
interest here is the steepness of the slope of J'(¢),
because that is limited by the incoming photon flux. If
we make the comparison, we find that H1 is reasonably
efficient in using the movement information available
at the periphery over a short time interval of 5-10 ms,
depending on the strength of the stimulus. The analysis
of the real-time reliability based on truncated interval
distributions and on firing patterns (see section 4 (¢))
reveals that much of the information is contained in the
time of firing of the first and the second spike. As shown
in figure 3, the latency from stimulus presentation to
spike generation decreases for increasing step size.
Consequently, if we limit the analysis to a fixed
number of spikes the scaled asymptotic value of @ must
be lower for the pair of large than for the pair of small
steps, because the slope of the 4" curve is bounded by
the finite photon flux. This is demonstrated clearly by
figure 12. However, for all three step size pairs shown
in the figure the slope of the neuron’s discrimination
performance is within a factor of two from the
theoretical value. This demonstrates that the statistical
efficiency of the fly’s movement detector does not
depend very much on the stimulus strength over the
range of step sizes used here.

It should not be too surprising that the neuron
performs well only over a short time interval and does
not reach the values for 4’ computed from the model at
large delays (figure 194): the experimental stimulus is
not very natural, and in real-life conditions the fly is
likely to see movement changing continuously (de
Ruyter van Steveninck & Bialek 1988; Bialek et al.
1991). In such circumstances it might be better not to
wait very long to get an accurate estimate of the
stimulus at one point in time, but rather to update
rough estimates as fast as possible. Such a view is
supported by behavioural evidence: a chasing fly
tracks the leading fly with a delay of about 30 ms
(Land & Collett 1974), corresponding to the time at
which the measured @'(¢) levels off. Additional support
comes from the analysis of firing pattern distributions,
especially for larger step sizes, which does not indicate
the existence of a complex time-consuming code to
specify step sizes. Finally we notice that the analysis of
reliability in real-time estimation tasks (Bialek ef al.
1991) shows that the ‘effective noise level’ for
movement estimation by HI1 is equivalent to a
discrimination threshold of about 0.1° in a 30 ms
window, comparable to what we find here.

A step size difference of 0.12° can be discriminated
with &’ close to unity, with use of the timing information
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of just one spike from one neuron. For the blowfly
visual system this angular difference is of the order of
one-tenth of the photoreceptor spacing, well within the
hyperacuity régime. A similar result was found for
monkey cortical cells by Parker & Hawken (1985).
Geisler (1989) compiles data on a variety of human
photopic visual tasks and compares human perform-
ance with an ideal observer who has access to all the
photons entering within the aperture of the cones in the
retina. The values Geisler computes for the fraction of
photons used are below 19,. These low values may be
due in part to a low statistical efficiency of the cones. A
hint in this direction is that human scotopic per-
formance seems much more efficient: Savage & Banks
(1992) report a highest value of 33 %, for the efficiency
in a contrast discrimination task. They specify the
efliciency, as we do, with respect to the signal to noise
ratio of the photoreceptors involved in the visual task
and hence the value they report reflects the efficiency
with which the brain processes the information present
in the retinal voltages. The values of 259, we report
here for the single neuron compares well with the
efficiency of the whole human observer. Similar values
were obtained by Barlow (1980) and Tapiovaara
(1990) for symmetry recognition tasks. This may mean
that, given the right conditions, visual information
processing really approaches the ideal observer limits,
independent of what animal the brain belongs to.
Indeed, this notion of near-optimal neural performance
may be more generally applicable (Barlow 1981;
Bialek 1992).

Given that neurons operate with limited dynamic
range and that the brain approaches optimal per-
formance, the nervous system must employ adaptive
strategies to keep the computations it performs near to
the optimum. It is well known that biological systems
adapt their sensors to ambient conditions, and in the
fly this has been interpreted as a strategy for improving
coding strategies (Laughlin 1989). There is no reason
to believe that adaptation should stop there, and in fact
there are strong theoretical indications that the visual
system should adapt its computational strategies to
higher-order statistics of the visual stimulus to perform
movement detection in an optimal way (Potters &
Bialek 1994). An experimental example is found in H1
itself, which exhibits a form of movement-specific
adaptation where the dynamics of the response adapts
to the speed at which a stimulus pattern moves
(Maddess & Laughlin 1985; de Ruyter van Steveninck
et al. 1986). Moreover, the response dynamics of H1
adapts to the time interval between stepwise movement
stimuli (Zaagman et al. 1983). Most probably due to
this effect it is possible to present steps with the
relatively short intervals used here, without overlap of
the responses.

7. CONCLUSION

Over a limited time window, from about 20 to 30 ms
after the stimulus step, and roughly corresponding to
the firing of the first and the second spike, the H1
neuron effectively uses much of the information


http://rstb.royalsocietypublishing.org/

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rstb.royalsocietypublishing.org

Reliability of neural movement computation R.de Ruyter van Steveninck and W. Bialek 339

available in the sensory periphery. This means that, for
that time window, the fly’s brain approaches an ideal
noiseless movement sensor. When the information from
the second interval is used, at about 45 ms after the
step in the example in figure 19, the neuron’s
performance is about one-third of that of the ideal.
Over time the neuron’s performance does not seem to
reach much higher values of &' and tends to deviate
more from the theoretical limit. The measured values
of d’ seem reasonable, but are never spectacularly high
(up to about 4, see figure 7).

Together these findings make sense if we realize that
the typical behavioural response time of the fly is of
order 30 ms. In other words, the fly seems to use a
strategy of making estimates fast, using the input
information efficiently over a short time interval only.
It would make little sense to try and improve the
accuracy of an estimate much beyond the behavioural
response time, because by measuring a stimulus and
turning in response the fly itself generates another
visual movement stimulus, which in turn should be
measured by its movement sensors.

On the time scales of interest in the experiment,
photoreceptor noise is dominated by photon shot noise
which means that the reliability of H1’s output must be
determined to a large extent by the quality of the
optical signal. There is no neuroanatomical or neuro-
physiological evidence for massive redundancy in
arthropod nervous systems. More specifically, for the
fly visual system it is known that HI is unique in its
combination of visual field and preferred direction of
movement (Hausen 1982), and from the results
presented here we may begin to understand why: it
makes little sense to use functional duplicates of any
neuron that performs close to perfectly when compared
with the noise levels inherently present in the stimulus.
It remains to be seen to what extent this conclusion can
be generalized, to higher contrasts and light intensities
for example, but one should at least be cautious in
interpreting the variability of response of a single
neuron in terms of noise generated within the nervous
system itself.

We are greatly indebted to Hans van Hateren for his help
in getting the photoreceptor data and to Ben Pijpker for
constructing the stimulus pattern generator. Henk Zaagman
provided helpful advice and most of the infrastructure. This
work was supported in part by the Netherlands Organization
for Scientific Research (NWO).

REFERENCES

Barlow, H.B. 1980 The absolute efficiency of perceptual
decisions. Phil. Trans. R. Soc. Lond. B 290, 71-82.

Barlow, H.B. 1981 The Ferrier Lecture. Critical limiting
factors in the design of the eye and visual cortex. Proc. R.
Soc. Lond. B 212, 1-34.

Barlow, H.B. & Levick, W.R. 1969 Three factors limiting
the reliable detection of light by retinal ganglion cells of
the cat. J. Physiol., Lond. 200, 1-24.

Beersma, D.G.M., Stavenga, D.G. & Kuiper, J.W. 1975
Organization of visual axes in the compound eye of the fly
Mousca Domestica L. and behavioural consequences. J. comp.
Physiol. 102, 305-320.

Bialek, W. 1992 Optimal signal processing in the nervous

Phil. Trans. R. Soc. Lond. B (1995)

system. In Princeton lectures in biophysics (ed. W. Bialek), pp.
321-401. Singapore: World Scientific.

Bialek, W., Rieke, F., de Ruyter van Steveninck, R.R. &
Warland, D. 1991 Reading a neural code. Science, Wash.
252, 1854-1857.

Britten, K.H., Shadlen, M.N., Newsome, W.T. & Movshon,
J.A. 1992 The analysis of visual motion: a comparison of
neuronal and psychophysical performance. J. Neurosci.
12(12), 4745-4765.

Buchner, E. 1976 Elementary movement detectors in an
insect visual system. Biol. Cyber. 24, 85-101.

Buchner, E. 1984 Behavioural analysis of spatial vision in
insects. In Photoreception and vision in invertebrates (ed. ML.A.
Ali), pp. 561-622. New York: Plenum Press.

Bullock, T.H. 1970 The reliability of neurons. J. gen.
Physiol. 55, 565-584.

Eckhorn, R. & Pépel, B. 1974 Rigorous and extended
application of information theory to the afferent visual
system of the cat. I. Basic concepts. Kybernetik 16, 191-200.

Geisler, W.S. 1989 Sequential ideal-observer analysis of
visual discriminations. Psychol. Rev. 92-2, 267-314.

Gotz, K.G. 1964 Optomotorische Untersuchung des
visuellen ~ Systems einiger ~Augmenmutanten der
Fruchtfliege Drosophila. Kybernetik 2, 77-92.

Gotz, K.G. 1965 Die optischen Ubertragunseigenschaften
der Komplexaugen von Drosophila. Kybernetik 2, 215-221.

Green, D.M. & Swets, J.A. 1966 Signal detection theory and
psychophysics. New York: Wiley.

van Hateren, J.H. 1985 The Stiles—Crawford effect in the
eye of the blowfly, Calliphora erythrocephala. Vision Res. 25,
1305-1315.

Hausen, K. 1982 Motion sensitive interneurons in the
optomotor system of the fly. I. The horizontal cells:
Structure and signals. Biol. Cyber. 45, 143-156.

Hecht, S., Shlaer, S. & Pirenne, M.H. 1942 Energy,
quanta, and vision. J. gen. Physiol. 25, 819-840.

Kirschfeld, K. 1967 Die Projektion der optischen Umwelt
auf das Raster der Rhabdomere im Komplexauge von
Musca. Expl Brain Res. 3, 248-270.

Land, M.F. & Collett, T.S. 1974 Chasing behaviour of
houseflies (Fannia canicularis). A description and analysis. J.
comp. Physiol. 89, 331-357.

Laughlin, S.B. 1989 The role of sensory adaptation in insect
compound eyes. J. exp. Biol. 146, 39-62.

Leutscher-Hazelhoff, J.T. 1975 Linear and non-linear
performance of transducer and pupil in Calliphora retinula
cells. J. Physiol., Lond. 246, 333-350.

Levick, W.R., Thibos, L.N., Cohn, T.E., Catanzaro, D. &
Barlow, H.B. 1983 Performance of cat retinal ganglion
cells at low light levels. J. gen. Physiol. 82, 405-426.

Maddess, T. & Laughlin S.B. 1985 Adaptation of the
motion sensitive neuron H1 is generated locally and
governed by contrast frequency. Proc. R. Soc. Lond. B 225,
251-275.

Mircea, A. & Sinnreich, H.
frequency-dependent nonlinear
Electron. Engrs 116, 1644—-1648.

von Neumann, J. 1956 Probabilistic logics and the synthesis
of reliable organisms from unreliable components. In
Automata studies (ed. C.E. Shannon & J. McCarthy), pp.
43-98. Princeton: Princeton University Press.

Parker, A. & Hawken, M. 1985 Capabilities of monkey
cortical cells in spatial-resolution tasks. J. opt. Soc. Am. A 2,
1101-1114.

Poggio, T. & Reichardt, W. 1973 Considerations on models
of movement detection. Kybernetik 13, 223-227.

Potters, M. & Bialek, W. 1994 Statistical mechanics and
visual signal processing. J. Phys., Paris, 4, 1755-1775.

Reichardt, W. 1957 Autokorrelations-Auswertung als

1969 Distortion noise in
networks. Proc. Inst.


http://rstb.royalsocietypublishing.org/

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rstb.royalsocietypublishing.org

340 R. de Ruyter van Steveninck and W. Bialek Reliability of neural movement computation

Funktionsprinzip des Zentralnervensystems. Z. Naturf.
12b, 448-457.

Reichardt, W. 1961 Autocorrelation, a principle for the
evaluation of sensory information by the central nervous
system. In Sensory communication (ed. W.A. Rosenblith), pp.
303-317. Cambridge: MIT Press.

Reichardt, W. & Poggio, T. 1976 Visual control of
orientation behaviour in the fly, part I. A quantitative
analysis. Q. Rev. Biophys. 9, 311-375.

Rose, A. 1948 The sensitivity performance of the human eye
on an absolute scale. J. opt. Soc. Am. 38, 196-208.

de Ruyter van Steveninck, R.R. 1986 Real-time performance of
a movement-sensitive neuron in the blowfly visual system. Thesis,
Rijksuniversiteit Groningen, The Netherlands.

de Ruyter van Steveninck, R.R. & Bialek, W. 1988 Real-
time performance of a movement-sensitive neuron in the
blowfly visual system: coding and information transfer in
short spike sequences. Proc. R. Soc. Lond. B 234, 379-414.

de Ruyter van Steveninck, R.R., Zaagman, W.H. &
Mastebroek, H.A.K. 1986 Adaptation of transient
responses of a movement-sensitive neuron in the visual
system of the blowfly Calliphora erythrocephala. Biol. Cyber.
54, 223-236.

van Santen, J.P.H. & Sperling, G. 1984 Temporal
covariance model of human motion perception. J. opt. Soc.
Am. A 1, 451-473.

Savage, G.L. & Banks, M.S. 1992 Scotopic visual efficiency:
constraints by optics, receptor properties and rod pooling.
Vision Res. 32-4, 645-656.

Smakman, J.G.J., van Hateren, J.H. & Stavenga, D.G. 1984
Angular sensitivity of blowfly photoreceptors: intra-
cellular measurements and wave-optical predictions. J.
comp. Physiol. 155A, 239-247.

Phil. Trans. R. Soc. Lond. B (1995)

Stavenga, D.G. 1979 Pseudopupils of compound eyes. In
Handbook of sensory physiology VII/6A4 (ed. H. Autrum), pp.
357-439. Berlin, Heidelberg, New York: Springer-Verlag.

Tapiovaara, M. 1990 Ideal observer and absolute efficiency
of detecting mirror symmetry in random images. J. opt.
Soc. Am. A 7, 2245-2253.

Tolhurst, D.J., Movshon, J.A. & Dean, A.F. 1983 The
statistical reliability of signals in single neurons in cat and
monkey visual cortex. Vision Res. 23, 775-785.

Van Trees, H.L. 1967 Detection, estimation, and modulation
theory. Part I. New York: Wiley.

van der Velden, H.A. 1944 Over het aantal lichtquanta dat
nodig is voor een lichtprikkel bij het menselijk oog. Physica
11, 179-189.

de Vries, Hl. 1943 The quantum character of light and its
bearing upon threshold of vision, the differential and
visual acuity of the eye. Physica 10, 553-564.

Wehner, R. 1981 Spatial vision in arthropods. In Handbook
of sensory physiology VII/6C (ed. H. Autrum), pp. 287-616.
Berlin, Heidelberg, New York: Springer-Verlag.

Wiener, N. 1958 Nonlinear problems in random theory.
Cambridge: MIT Press.

Zaagman, W.H., Mastebroek, H.A.K. & Kuiper, J. W. 1977
Receptive field characteristics of a directionally selective
movement detector in the visual system of the blowfly. J.
comp. Physiol. 116, 39-50.

Zaagman, W.H., Mastebroek, H.A.K. & de Ruyter van
Steveninck, R.R. 1983 Adaptive strategies in fly vision:
on their image-processing qualities. I[EEE Trans. Syst. Man
Cyber. SMC 13, 900-906.

Received 12 September 1994 ; accepted 4 November 1994


http://rstb.royalsocietypublishing.org/

